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1.	Introduction:	What	is	the	“Size”	of	a	Polymer	Chain?	

The	 remarkable	 properties	 of	 polymer	 materials	 are	 due	 to	 the	 large	 size	 of	 the	
constituting	macromolecules,	 but	 how	 can	 we	 express	 this	 size?	 In	 the	 case	 of	 a	 simple	
aliphatic	 chain	 like	polyethylene	 (PE),	where	all	 the	catenary	bonds	are	 exclusively	 carbon-
carbon	single	bonds,	 the	enthalpically	most	stable	conformation	is	a	"zig-zag"	conformation,	
with	 a	 fixed	 torsion	 angle	j	=	180°	 between	 the	C-C	 bonds	 (Slide	 68).	 This	 is	 the	 "contour	
length",	equal	to	n	´	l,	in	the	case	of	a	freely	jointed	chain,	where	n	is	the	number	of	catenary	
bonds	 and	 l	 is	 the	 bond	 length.	 For	 large	 n,	 however,	 this	 zig-zag	 conformation	 is	 highly	
improbable:	 driven	 by	 entropy,	 ideal	 polymer	 chains	 preferably	 fold	 into	 random	 coil	
structures	because	of	variations	in	the	torsional	angle.	It	is	therefore	more	useful	to	consider	
the	average	size	of	this	coil	(the	average	size	in	time	or	over	a	very	large	number	of	chains).	But	
which	would	be	the	best	measurement	for	this	size?	

2.	Polymer	Chain	Conformations	

A	chain	can	adopt	different	conformations	due	to	low	energetic	barriers	for	the	rotation	around	
covalent	single	bonds.	A	long,	stretched	chain	brought	into	contact	with	a	solvent,	for	example,	
will	quickly	adopt	a	"random	conformation".	At	a	finite	temperature,	the	solvent	molecules	will	
transfer	their	kinetic	energy	to	the	chain	by	literally	hitting	it.	In	a	few	picoseconds	the	zig-zag	
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conformation	will	be	completely	lost,	and	the	chain	will	form	a	"ball",	which	will	continue	to	
change	shape	passing	from	one	random	conformation	to	another	at	the	picosecond	time	scale	
(therefore	it	is	necessary	to	anchor	the	chains	to	a	substrate	to	make	an	AFM	image	such	as	
shown	on	Slide	12).	

2.1	The	mean	square	(root	mean	square)	end-to-end	distance	of	a	freely	jointed	linear	
chain	

The	end-to-end	distance,	Rn,	 and	 the	radius	of	gyration,	Rg	 (by	definition,	 the	moment	of	
inertia	 of	 a	 chain	with	mass	M	 around	 its	 center	 of	mass	 is	 equal	 to	MRg2;	Rg	 is	 therefore	
effectively	the	radius	of	the	sphere	occupied	by	the	random	coil.)	are	equivalent	measures	of	
the	polymer	chain	size	(Slides	70	and	74).	How	can	we	express	Rn	and	Rg	 in	terms	of	the	
parameters	n	and	l?	

To	simplify	the	discussion	of	polymer	chain	conformations,	we	will	first	forget	about	torsional	
and	bond	angles	 and	 consider	 an	 ideal	 chain	with	 free	 joints,	where	all	 catenary	bonds	are	
identical,	and	a	given	bond	can	take	any	orientation	in	relation	to	its	neighbor	bonds.	

Let	𝑅"⃗ !be	the	vector	which	connects	the	two	ends	of	a	linear	chain	with	n	identical	free	joints	in	
random	conformation,	going	from	the	end	associated	with	the	first	link	1	to	that	associated	with	
the	nth	and	last	link.	

Let	 𝑎⃗" 	 be	 the	 vector	which	 represents	 the	orientation	 and	 the	 length	 |𝑎⃗"| = 𝑎	 of	 the	 ith	 link	
(which	is	between	the	i	-	1st	and	the	i	+	1st	link).	
	
              (1) 
	
Since	the	orientation	of	𝑅"⃗ !	changes	randomly,	its	average	(in	time	or	over	a	large	number	of	
identical	chains)	is	0.	However,	the	square	of	the	average	distance	between	the	two	ends	is	a	
scalar	quantity:	
	
              (2) 
	
	
	
	
	
where	𝜃",$ 	 is	the	angle	between	𝑎⃗" 	and	𝑎⃗$ .	It	can	take	any	value	between	0	and	2p	 in	a	freely	
jointed	chain.	But	the	mean	of	cosq		between	0	and	2p is	0.	So,	
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and	the	"root	mean	square"	(or	the	"geometric	mean"	or	even	the	"quadratic	mean"),	which	we	
simply	call	Rn	is	therefore	
	
   	 	 	 	 	 	 (4).	
	

In	 other	 words,	 the	 average	 square	 distance	 between	 the	 ends	 of	 a	 linear	 chain	with	
identical	free	joints,	and	therefore	the	average	"size"	of	the	coil	formed	by	this	chain,	is	
equal	to	the	root	of	the	number	of	bonds	multiplied	by	the	bond	length.	This	result,	which	
must	be	 engraved	 into	 the	heart	 of	 any	polymer	 scientist,	 is	a	key	 result	 for	 the	physical	
properties	of	polymers	which	we	will	come	back	to	a	lot	throughout	our	course.	Moreover,	
because	the	distribution	of	Rn	is	governed	by	a	Gaussian	distribution	function,	an	ideal	polymer	
chain	 is	often	referred	to	as	a	Gaussian	chain.	Note	that	we	often	use	𝑙	 instead	of	𝑎	 for	the	
length	of	the	bond	in	these	equations.	Sorry	for	the	inconsistency,	but	this	is	just	so…	

Another	way	to	specify	 the	size	of	 the	coil	 is	 to	use	 its	radius	of	gyration,	Rg.	One	can	show	
"easily"	(Slide	74)	that	

	
   	 	 	 	 	 	 (5).	
	

Indeed,	this	relation	remains	valid	for	large	n	regardless	of	the	applied	ideal	chain	model,	and	
these	two	quantities	thus	intervene	in	the	same	way	in	the	physical	properties.	

2.2	The	"Rigidity"	of	a	Chain	

A	real	chain	has	fixed	bond	angles.	Thus,	the	angle	a		will	be	180°	–	110°	»	70°	for	polyethylene	
(Slide	75).	We	can	approach	a	little	more	towards	a	real	chain	with	identical	catenary	bonds	if	
we	admit	a	constant	value	for	a,	but	that	the	“torsion	angle”	f	,	which	is	defined	by	the	bonds	
𝑎⃗")%	to	𝑎⃗"*%,	can	take	any	value	between	0	and	2p.	We	call	this	a	"freely	rotating	chain".	With	
this	improved	model,	it	can	be	"easily"	shown	again	that	

	
   	 	 	 	 	 	 (6).	
	

Note	that	for	a	reasonable	choice	of	a	(between	0	and	90	°	or	p/2	therefore),	the	value	of	Rn	
given	by	Equation	6	will	always	be	greater	than	that	given	by	Equation	4.	

More	generally,	whenever	we	restrict	the	freedom	of	bond	movements,	we	tend	to	increase	Rn,	
but	we	can	always	write	it	as	

	
   	 	 	 	 	 	 (7).	

𝑅! = √𝑛𝑎 ≡ √𝑛𝑙 

𝑅+ =
𝑅!
√6

 

𝑅! = 9𝑛
1 + cos 𝛼
1 − cos 𝛼 𝑎 ≡

9𝑛
1 + cos 𝛼
1 − cos 𝛼 𝑙 

𝑅! = =𝐶,𝑛𝑎 
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where	𝑪,,	which	is	normally	greater	than	1,	is	the	"stiffness"	of	the	chain.	We	see	that	the	
chain	always	behaves	like	a	chain	with	free	joints,	and	therefore	this	model	has	a	certain	
generality.	Some	examples	of	𝐶,are	shown	on	Slide	78	for	real	polymers	in	solution.	𝐶,	varies	
considerably,	even	for	vinyl-type	chains	(PE,	PP,	PS)	containing	only	catenary	C-C	single	bonds	
where	a		is	a	priori	identical	at	approximately	70°	in	each	case.	

Slide	79	provides	some	explanations	for	these	differences.	Indeed,	due	to	steric	constraints	on	
the	torsion	angle,	f	tends	to	adopt	values,	for	which	the	atoms	that	are	not	directly	linked	by	
the	bond	in	question	are	placed	as	far	away	as	possible	(staggered	conformations,	see	Slide	67).	
These	values	correspond	to	the	trans	position	(most	favorable	in	PE)	and	to	the	two	gauche–	
and	gauche+	 positions.	This	 is	 the	basis	 of	 the	model	with	 “hindered	 rotations”	 ("rotational	
isomeric	states"),	where	a	potential	energy	is	assigned	to	each	position,	which	makes	it	possible	
to	calculate	the	probability	of	finding	a	given	bond	in	these	different	conformations.	Thus,	in	
the	presence	of	large	side	groups	such	as	-CH3	(PP)	or,	even	more,	a	benzene	group	(PS),	certain	
positions	will	be	disfavored	by	increasing	their	potential	energy.	PS	is	therefore	much	more	
rigid	than	PP,	which	in	turn	is	slightly	more	rigid	than	PE.	

The	angle	a	can	also	vary	depending	on	the	type	of	polymer.	Consider,	for	example,	a	chain	of	
benzenes	linked	by	bonds	in	the	para	position.	Here	the	angle	a	is	effectively	p/2.	Why?	What	
is	the	stiffness	of	the	chain	according	to	Equation	6?	And	what	would	Rn	be?	In	fact,	Rn	must	be	
equal	to	na	in	this	case.	The	problem	here	is	that	the	freely	rotating	chain	model	only	works	if	
the	chain	is	long	enough,	i.e.	if	there	are	values	of	i	and	j	sufficiently	far	apart	for	the	correlation	
between	𝑎@" 	and	𝑎@$ 	to	tend	towards	0.	However,	if	a	=	p/2,	this	is	not	possible,	even	if	n	is	infinite.	

In	general,	the	chemical	structures	of	polymers	are	much	more	complex	than	a	simple	chain	of	
identical	bonds	and	it	is	necessary	to	take	the	existence	not	only	of	the	different	bond	lengths	
but	 also	 of	 the	 different	 bond	 angles	 into	 account,	 which	 leads	 to	 expressions	 for	 rather	
complicated	 Rn	 (see	 a	 book	 by	 Mattice	 and	 Suter	 (ETHZ):	 Conformational	 theory	 of	 large	
molecules:	the	rotational	isomeric	state	model	in	macromolecular	systems).	Nevertheless,	we	can	
say	qualitatively	that	the	presence	of	rigid	catenary	bonds	will	always	increase	the	rigidity	
of	a	 chain	compared	 to	a	 simple	chain	 like	PE	 (double	bonds,	 conjugated	systems,	or	
bulky	groups	likely	hinder	the	rotations	of	the	catenary	bonds,	as	well	as	specific	intra-
chain	interactions	such	as	hydrogen	bonds).	Unfortunately,	 the	effective	value	of	𝐶,	also	
depends	 on	 the	 definition	 of	 the	 connection	 and	 therefore	 on	 its	 length.	 So,	 even	 though	
bisphenol	A	polycarbonate	contains	benzene	units	in	its	main	chain	and	should	a	priori	show	a	
high	rigidity,	its	𝐶,	value	is	very	low.	Try	Exercise	1.7	if	you	want	to	know	why.	

3.	Real	Polymer	Chain	Behavior	

For	real	polymer	chains,	interactions	and	the	own	volume	of	polymer	chain	segments	can	no	
longer	be	disregarded.	Because	the	monomer	segments	of	a	real	chain	have	a	 finite	volume,	
they	 cannot	 occupy	 the	 same	 spot	 in	 space.	 Real	 polymer	 chains	 may	 therefore	 be	 better	
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mapped	onto	a	self-avoiding	random	walk,	where	each	monomer	unit	blocks	the	space	for	
other	monomer	units	and	causes	part	of	 the	volume	to	be	excluded	volume.	The	chain	has	
therefore	less	conformational	freedom	and	must	expand	in	comparison	to	the	random	coil	of	
an	ideal	chain	(Slide	83).	

Moreover,	the	monomer	segments	of	a	real	chain	display	interactions	among	themselves	and	
with	their	surrounding	(solvent	molecules,	for	instance).	Those	interactions	can	be	attractive	
or	 repulsive,	 but	 we	 will	 focus	 our	 consideration	 on	 attractive	 monomer-monomer	 and	
attractive	monomer-solvent	interactions.	In	case	of	equal	monomer-monomer	and	monomer-
solvent	 interactions,	 the	 effective	monomer-monomer	 interaction	will	 be	 zero	 (monomeric	
units	can’t	distinguish	between	other	monomer	units	and	solvent	molecules),	a	scenario	that	
can	be	described	with	the	help	of	a	hard-sphere	potential.	It	is	more	common	that	the	attraction	
between	monomers	 is	 stronger	 than	 that	between	monomer	and	solvent	due	 to	 the	perfect	
structural	match	 of	 two	monomer	 units.	 The	 net	monomer-monomer	 interactions	 are	 then	
attractive	as	long	as	they	do	not	get	too	close	to	each	other	(Lennard-Jones	potential).	

We	continue	by	calculating	the	probability	of	finding	two	monomeric	units	at	a	certain	distance	
r	using	 the	Boltzmann	distribution	and	 its	normalized	 form,	 the	Mayer	 f-function	 (Slide	85),	
whose	 negative	 integral	 corresponds	 to	 the	 excluded	 volume.	 The	 excluded	 volume	
quantifies	the	space	that	each	chain	segment	blocks	in	its	surrounding	due	to	(i)	its	own	
volume,	 and	 (ii)	 the	 effective	monomer-monomer	 interactions.	 It	 allows	 us	 to	 classify	
solvents	 according	 to	 their	 quality	 as	 illustrated	 on	 Slide	 86.	 As	 the	 monomer-monomer	
interactions	 become	 increasingly	 attractive	 over	 those	with	 the	 environment,	 the	 excluded	
volume	gets	reduced	and	the	solvent	quality	decreases.	In	the	𝜃-state,	the	negative	and	positive	
contributions	to	the	integral	of	the	Mayer	f-function	cancel	each	other	and	the	excluded	volume	
becomes	zero.	It	appears	as	if	neither	the	hard-sphere	repulsion	nor	the	effective	monomer-
monomer	attraction	was	present.	In	the	𝜽-state,	the	polymer	chain	therefore	adopts	their	
ideal	random	coil	conformation	and	ideal	chain	models	are	applicable.	This	state	is	very	
important	in	the	field	of	polymer	physics	and	is	omnipresent	in	polymer	melts	(Slide	88).	

4.	Summary	

Conformations:	 the	 trajectories	of	 ideal	chains	 follow	a	 “random	walk”,	with	 the	end-to-end	
distance	Rn	and	the	radius	of	gyration,	Rg	=	𝑅! √6⁄ ,,	scaling	as	n1/2	or	M1/2.	

The	expansion	of	the	conformations	of	real	chains	with	respect	to	the	ideal	freely	jointed	chain	
is	expressed	using	𝐶,,	a	measure	of	chain	“stiffness”:	

	

	

Ideal	chain	models	are	particularly	applicable	in	the	𝜃-state	of	solutions	and	in	polymer	melts.	

𝑅! = =𝐶,𝑛𝑎 


